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1. Introduction

Much has been learned about the AdS-CFT correspondence, which relates large-N gauge

theory to string theory [1], by looking at limits in which an SO(6) charge J also becomes

large. At large λ the theory is a theory of classical strings moving in AdS5 × S5, with J

an angular momentum on the sphere, while at small λ it is perturbative Yang-Mills theory

in 4 dimensions, with J an R-charge of this theory. [2, 3] This is the large-J sector of the

correspondence.
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The first well-studied example in this sector is the BMN limit [4, 5] which on the

string side, consists of nearly point-like solutions orbiting the sphere, experiencing a pp-

wave geometry. On the gauge theory side, the anomalous dimension ∆−J can be computed

as the energy of a ferromagnetic spin chain. [6 – 8] These spin chains are integrable systems,

allowing the use of Bethe ansatz techniques to compute the spectrum from the S-matrix for

two-particle scattering. [9 – 14] (In some cases one can explicitly recover the string action

from the spin-chain [15].)

The elementary excitations of spin chains are magnons, which to be scattered must

have some momentum p 6= 0. Extending the theory to allow lone magnons with momentum

leads to the centrally extended algebras [8, 16] on the gauge side, dual to strings which

do not close. These are the giant magnons [6]. Generalisations which have been explored

include magnons with more than one large angular momentum [17 – 19] and magnons with

finite J [20 – 23].

Giant magnons are one type of rigidly rotating strings with cusps, moving on the

sphere and made as large as they can be. In general these are called spiky strings, and

they also exist in flat space [24, 25] and in AdS. [26, 27] In flat space T-duality leads to

another class of spiky strings, with cusps pointing inwards, and these ‘T-dual’ solutions

can also exist on the sphere. Starting with one of these and taking the same maximum-size

limit used for the magnon then leads to the single spike solution which we study here. [28]

Recent papers on the single spike include [29 – 35].

The giant magnon can be viewed as an excitation above a vacuum solution of a point

particle orbiting along the equator. [36] (The label ‘giant’ is meant to indicate that they

explore much of the S5 geometry, as the earlier giant gravitons did. [37, 38]) Fluctuations

of this vacuum have Hamiltonian ∆− J [39] (where J ≤ ∆ is the BPS bound.) The single

spike is similarly an excitation above a string wound around the equator, which we call the

hoop. In the Hamiltonian for fluctuations, the angular momentum J is replaced with a

measure of the winding along the same direction, which we call Φ. This is almost T-duality,

except that the circle involved is part of sphere. It is not clear whether this duality can be

usefully related to the T-duality used in [40] and [41], in S5 and AdS.

The single spike, and indeed the hoop, are not supersymmetric. Exploring the corre-

spondence in sectors with less or no supersymmetry is of great interest, and it is our hope

that the close relationship to the magnon case can be used as a tool for this. The gauge

theory dual of the single spike is not known, but it is conjectured to be some excitation of

an anti-ferromagnetic state of the spin chain [42, 43] in what has been named the large-

winding sector of the correspondence [44]. In the absence of supersymmetry it is possible

that integrability will help to find the dual of the spike solution.

Solitons have long been studied in field theory, and a set of tools called semi-classical

quantisation enables us to learn about the related objects in the quantum theory. [45 – 51]

Many of these techniques have been revived to study solutions of classical string theory

in AdS5 × S5 [39, 52 – 54] (which is known to be integrable [55, 56]). We have the extra

complication that the single spike is an excitation of an unstable vacuum state (as the string

wrapped around an equator of S5 can slide off towards the pole) so what we aim to calculate

by these methods is not an energy correction but a lifetime, as discussed in the text.
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Figure 1: The original and T-dual spiky string in flat space. Both are drawn with B = 5, leading

to 6 and 4 spikes respectively.

In section 2 we set out the solution, and write down its bosonic modes. The bosonic

string on the sphere can be mapped to sine-gordon theory, where the giant magnon becomes

the simple kink. The single spike is instead mapped to an unstable kink.

Section 3 contains the calculation of the ferminonic modes, along the lines of what was

done for the giant magnon in [57] and [53]. We find that, compared to the magnon, some

of the bosonic modes become tachyonic, while the fermionic modes double in number and

become massless, ruling out supersymmetry.

In section 4 we study the vacuum of the large-winding sector, the infinitely wound

hoop. We find that ∆−Φ is the Hamiltonian for perturbations of this hoop, and therefore

is the charge which receives quantum corrections. After making a rough calculation of

these corrections we conclude in section 5.

Appendix A is a computation of fermionic zero modes, which are in this case the ω → 0

end of the continuum of non-zero modes. Appendix B has some further details on quantum

corrections.

2. Bosonic sector

2.1 Spiky strings in flat space

The spiky string in flat space is the solution [26, 24, 25]

X0 = t,

X1 = A cos

(

t+ x

2A

)

+AB cos

(

t− x

2AB

)

, (2.1)

X2 = A sin

(

t+ x

2A

)

+AB sin

(

t− x

2AB

)

,

with two parameters A,B. This describes a rigidly rotating string with n = B + 1 cusps,

or spikes, pointing outwards (see figure 1). A clearly controls the overall size.
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Since this solution has neither centre-of-mass momentum nor winding, the effect of

T-duality in the X2 direction is to change the sign of the left-movers in that direction, [28]

giving

X0 and X1 unchanged, (2.2)

X2 = A sin

(

t+ x

2A

)

−AB sin

(

t− x

2AB

)

,

which is another rigidly rotating string, now with B − 1 spikes pointing inwards. In both

cases the cusps always move at the speed of light.

Notice that the T-dual solution could be obtained by simply interchanging x and t in

the spatial Xi. This symmetry is visible in the equations of motion

(

−∂2
t + ∂2

x

)

Xi = 0

and in the Virasoro constraints (for X0 = t)

(

∂tX
i
)2

+
(

∂xX
i
)2

= 1, ∂tX
i∂xX

i = 0,

all of which are unchanged by x↔ t.

2.2 On the sphere

Similar solutions exist on the sphere, and when they are small will reduce to those in flat

space. In [28] it was shown that if the analogue of the original solution (2.1) becomes large,

so that the spikes touch the equator, then each segment (between spikes) of it becomes a

giant magnon. For the analogue of the T-dual solution (2.2), the limit in which the lobes

touch the equator is the single spike which this paper studies.

We embed the sphere in R
6, parameterised by Xi (with XiXi = 1), and look at

solutions rotating in the Z1 = X1 + iX2 plane. The remaining four directions we call ~X ,

and X0 is the time co-ordinate (ultimately from AdS).

The giant magnon [6] is the following solution:

X0 = t,

Z1 = eit
(

c+ i
√

1 − c2 tanhu
)

, (2.3)

~X = ~n
√

1 − c2 sechu,

where we write c = cos(p/2) for the worldsheet velocity, and (u, v) are boosted worldsheet

co-ordinates

u = γ(x− ct), (2.4)

v = γ(t− cx), with γ =
1√

1 − c2
=

1

sin(p/2)
.

Note all of −∞ < x <∞ covers only one of the curves between cusps. It is understood that

the physical closed-string solution consists of several giant magnons connected together.
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Figure 2: The giant magnon (left, c = cos(p/2) = 0.7) and the single spike (right, c = 0.8). These

are both are rigidly rotating along the equator, with their cusps moving at the speed of light.

The case c = 0 (zero worldsheet velocity, p = π) is one of GKP’s folded strings. [2] In the

limit p→ 0 the magnon becomes a point particle moving along the equator.

This solution is written in conformal gauge (i.e. the induced metric is proportional to

the standard metric, ∂aX
µ∂bX

νηµν ∝ ηab) and thus solves the Virasoro constraints

(

∂tX
i
)2

+
(

∂xX
i
)2

= 1, ∂tX
i∂xX

i = 0,

and the conformal gauge equations of motion

(

−∂2
t + ∂2

x

)

Xi +Xi
(

−(∂tX
j)2 + (∂xX

j)2
)

= 0.

(The extra term, compared to flat space, comes from the constraint XiXi = 1.) As in

flat space, these are unchanged by the interchange of x and t. So there is another solution

Xi
spike(t, x) = Xi

magnon(x, t), which has been dubbed the single spike: [28]

X0 = t,

Z1 = eix
(

c+ i
√

1 − c2 tanh v
)

, (2.5)

~X = ~n
√

1 − c2 sech v .

This solution is drawn in figure 2. We keep the same parameter c, although the worldsheet

velocity is now 1/c in the x, t co-ordinates.1 For the most part we will be interested only

in the range 0 < c < 1.

Both solutions are localised on the worldsheet. As x → ∞, the magnon solution

approaches the point particle Z1 = eit and ~X = 0 while the single spike solution becomes

instead the infinitely wound hoop Z1 = eix. The point particle and the hoop are clearly

related by the same x↔ t swop, and they are also the vacuum solutions needed to obtain

the magnon or the single spike by the dressing method, which survives this interchange. [58,

59, 36, 31]

1This is related to the parameter θ0 used in [28], which is the angle from the north pole to the tip of the

spike, by sin θ0 = c = cos(p/2). Also note that θ = π
2
− θ0 = p/2.
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The string’s conserved charges of interest are defined as

∆ =

√
λ

2π

∫

dx 1 energy (simple in this gauge!),

J =

√
λ

2π

∫

dx Im
(

Z1∂tZ1

)

angular momentum in Z1 plane,

Φ =

√
λ

2π

∫

dx Im (∂x logZ1) =

√
λ

2π
∆φ winding charge. (2.6)

This Φ is a conveniently scaled version of the the opening angle ∆φ, where φ = argZ1 is

the azimuthal angle.

For the magnon, ∆ and J are infinite, and we have the familiar

∆ − J =

√
λ

π
sin(p/2), (2.7)

Φ =

√
λ

2π
p .

For the single spike, it is Φ instead of J which is infinite, and

∆ − Φ =

√
λ

2π
p, (2.8)

J =

√
λ

π
sin(p/2) .

2.3 Zero modes

Bosonic zero modes are the variations produced by changing collective co-ordinates:

δvX
i = −∂X

i

∂v0

∣

∣

∣

v0=0
,

where v0 is some modulus. Writing the single spike solution (2.5) with explicit x0 and v0
in addition to the direction ~n

Z1 = ei(x−x0)
(

c+ i
√

1 − c2 tanh(v − v0)
)

,

~X = ~n
√

1 − c2 sech(v − v0),

we obtain the following modes:

• δx, a rigid rotation of Z1:

δxZ1 = iZ1 ,

δx ~X = 0 ;

• δv, a reparametrisation along v:

δvZ1 = eiti
√

1 − c2 sech2 v , (2.9)

δv ~X = −~n
√

1 − c2 sech v tanh v ;
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• δm, a rotation of the orientation ~n:

δmZ1 = 0 ,

δm ~X = ~m
√

1 − c2 sech v ,

where ~m · ~n = 0, thus there are three such modes.

It may seem strange to work out δv holding x fixed (and δx holding v fixed) rather than

always using one pair x, t or u, v. This simply gives a convenient linear combination of the

modes, in which one is normalisable and one is not. If instead we worked out δt holding x

fixed (and vice versa) we would get

δt|xX
i = γδvX

i δx|tX
i = δxX

i − cγδvX
i

δt|xX
0 = 1 δx|tX

0 = 0

where we now write the time components in addition to the spatial ones. In spacetime the

meaning of these two modes (δt|x and δx|t) is clear: at any point they are the two tangent

vectors to the string. In fact they are exactly the co-ordinate basis vectors from x, t. These

would normally generate reparametrisations, not physical modes.

But here, as for the giant magnon, we are not studying the complete string solution,

but rather just a section of it.2 There must be solitons elsewhere on the worldsheet, and

motion relative to these is physical. Thus we keep one of these modes, along with the 3

modes δm, making 4 zero modes in total.3

Notice that the other physical zero modes, the perpendicular rotations δm, are indepen-

dent of u. The corresponding modes in the magnon case, (2.15) in [53], are independent of

v, which is time boosted by c. This is a reason for regarding u as being the time co-ordinate

for the purpose of identifying zero and non-zero modes.4

2.4 Non-zero modes

Inserting Xi + δXi into the equation of motion, we obtain the equation for the fluctuations

∂a∂
aδXi +

(

1 − 2 sech2 v
)

δXi −
(

Xj∂a∂
aδXj

)

Xi = 0.

The zero modes above are solutions of this equation. We now seek non-zero modes, i.e.

solutions of the form

δXj = eikv−iωu f j(v).

2We return to this question in section 4.3 below.
3Our mode δv (2.9) is the analogue of [57]’s (3.11) and [53]’s (2.16). In [57] this is derived from a

translation of the sine-gordon soliton.
4We could regard u as being the product of a boost by velocity 1

c
> 1:

u = γ(x − ct) = − t − 1
c
x

q

( 1
c
)2 − 1

. (2.10)

See also equation (2.17) below.
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The equivalent problem for the magnon was solved in [53], by a method involving finding a

scattering solution and analytically continuing it. Like the background solution, the modes

can be read off by interchanging x and t.

• First, there is one massless solution (i.e. ω2 = k2):

δr ~X = eikv−i|k|u ~n
(

k + |k| cos p
2

)

sech v tanh v , (2.11)

δrX
1 + iδrX

2 = −i eikv−i|k|ueix
(

k − |k| sinh v sinh

(

v + i
p

2

))

sech2 v ,

δrX
1 − iδrX

2 = i eikv−i|k|ue−ix

(

k − |k| sinh v sinh

(

v − i
p

2

))

sech2 v .

This solution we drop on the grounds that it is pure gauge: at any given point (x, t),

it is just a linear combination of the zero modes δv and δx, which we showed to be

just reparametrisations.5 The required combination is

δrX
i = eikv−i|k|u

(

−
(

k + k cos
p

2

)

δvX
i + |k| δxXi

)

.

• Second, there are three orthogonal fluctuations, in directions ~m with ~m · ~n = 0:

δ⊥ ~X = eikv−iωu ~m (k + i tanh v) , (2.12)

δ⊥X
1 = δX2

⊥ = 0,

and one parallel fluctuation, along the spike’s orientation ~n:

δ|| ~X = eikv−iωu ~n
(

k + i tanh v −
(

k + ω cos
p

2

)

sech2 v
)

, (2.13)

δ||X
1 + iδ||X

2 = −i eikv−iωueix
(

k sinh v + ω sinh

(

v + i
p

2

)

+ i cosh v

)

sech2 v ,

δ||X
1 − iδ||X

2 = i eikv−iωue−ix

(

k sinh v + ω sinh

(

v − i
p

2

)

+ i cosh v

)

sech2 v .

These all have ω2 = k2 + 1, the dispersion relation for a massive particle m2 = 1.

Despite appearing massive in u, v, these modes nevertheless represent an instability with

respect to physical time. Re-write the modes in the original co-ordinates x, t, by defining

the K,W as follows:

δXj = eikv−iωu f j(v) = eiKx−iWt f j(γ(t− cx)). (2.14)

Then W 2 = K2 − 1: written in x, t, these modes are tachyonic (with m2 = −1). In our

gauge, t = X0 is the target-space’s time coordinate. Since we have no reason to exclude

|K| < 1, we have modes with imaginary W , which are exponentially growing or dying in

time, rather than oscillating.

5Note that the breaking of translational symmetry on the worldsheet (discussed in section 2.3) affects

only the zero modes.
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2.5 Modes in AdS directions

The solutions above are in the R× S5 subspace of AdS5 × S5. There are no zero modes in

the AdS directions, as the centre is a special place, but there are non-zero modes. These

are simply the modes of a point particle about the centre of Anti-de Sitter space, identical

to the giant magnon case.

Write the AdS5 part of the metric as

ds2AdS = −
(

1 + η2/4

1 − η2/4

)2

dτ2 +
1

(1 − η2/4)2
dηkdηk ,

where k = 1, 2, 3, 4. In these co-ordinates the modes are simply

ηk(x, t) = eiKx−iWtfk(K)

with W 2 = K2 + 1. (The infinitely wound hoop has identical AdS modes. We write the

Lagrangian for perturbations of this in section 4.1 and all the modes in appendix B.2.)

2.6 The Pohlmeyer map

The theory of classical strings moving on R × S2 is equivalent to the sine-gordon model.

The mapping goes as follows: if Xµ(x, t) is a conformal-gauge string solution with X0 = t,

then the field α(x, t) defined by [60]

cosα = −∂tX
i∂tX

i + ∂xX
i∂xX

i (2.15)

obeys the sine-gordon equation

−∂t∂tα+ ∂x∂xα = sinα .

This is the equation of motion for a field with Lagrangian

L = −1

2
(∂tα)2 +

1

2
(∂xα)2 + U(α)

(and thus Hamiltonian H = 1
2(∂tα)2 + 1

2 (∂xα)2 + U(α), in our sign convention) using

potential

U(α) = 1 − cosα = 2 sin2
(α

2

)

.

The giant magnon (2.3) is mapped to the simple kink [6]

α = 4arctan
(

e−γ(x−ct)
)

connecting α = 0 and α = 2π at x = ±∞. The point particle is mapped to the vacuum

α = 0, and the constant in U(α) was chosen to make its energy (and thus the energy

density away from the kink) zero. Then the kink has energy

Es.g = 8γ =
8

sin(p/2)
. (2.16)

– 9 –
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Figure 3: Under the Pohlmeyer map, the magnon is sent to the ordinary kink (in red) while the

single spike is mapped to an unstable solution connecting the hilltops (in blue). The sine-gordon

field α is plotted left-to-right, x into the page, and U(α) vertically.

The velocity c can be changed by boosting the kink, and the energy Es.g. changes as one

would expect for a relativistic object of rest mass 8.6 But this energy, from the sine-gordon

model’s Hamiltonian, is inverse to the spin-chain energy constructed out of target space

charges ∆ − J =
√

λ
2 sin(p/2). This mismatch leads to the following difference: while the

time-delay of scattering giant magnons (on the string worldsheet) or kinks (in sine-gordon

theory) is the same, the resulting phase shift of the wave-functions is different. [6] That is

because these two theories are only identical at the classical level. [61]

The single spike (2.5) is mapped instead to an unstable kink. From the map (2.15) it

is clear that the effect of the x↔ t interchange is to shift the field by π:

α(x, t) = αmagnon(t, x) − π = 4arctan
(

e−γ(t−cx)
)

− π .

This solution connects two adjacent maxima of U(α), rather than two minima: α = ±π
at x = ±∞. Both cases are drawn in figure 3. If we choose the constant in U(α) to place

these maxima at zero

U(α) = −1 − cosα = −2 sin2

(

α+ π

2

)

,

then this unstable kink solution has energy

Es.g. = 8 cγ =
8cos(p/2)

sin(p/2)
=

8
√

(1
c )2 − 1

. (2.17)

6However, giant magnons of different c are not related by worldsheet boosts (which are just reparametri-

sations) since X0 = t is held fixed.
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3. Fermionic sector

To check for supersymmetry, we now calculate the fermionic fluctuations of this solution.

We find that these are all massless, while 2D supersymmetry would require them to have

the same masses as the bosonic modes above. Also, there are twice as many fermionic as

bosonic modes, while supersymmetry needs equally many.

The calculation follows what was done for the giant magnon by Minahan [57] (zero

modes) and Papathanasiou and Spradlin [53] (non-zero modes).

3.1 Setup

We follow the notation from [57] as much as possible, except for the worldsheet co-ordinates:

we use (x, t) and boost by c to (u, v) (instead of (σ, t) and boost by v to (x, ξ)). Indices

a, b = 0, 1 are worldsheet directions, µ, ν curved spacetime, A,B,C flat spacetime, and

I, J = 1, 2 number fields.

The unperturbed solution (2.5) lives in R × S2, for which we now use co-ordinates t

and the usual angles θ and φ. This part of the metric is then

gµν = EA
µE

B
ν ηAB =







−1

1

sin2 θ






for ν =

t

θ

φ

, (3.1)

so the vielbein’s components are Et
t = Eθ

θ = 1 and Eφ
φ = sin θ. (We are using labels t, θ, φ

for both curved and flat indices.) The single spike (2.5) in these co-ordinates is

X0 = t ,

Xθ = θ = arccos

(

1

γ cosh v

)

, i.e. cos θ =
√

1 − c2 sech v ,

Xφ = φ = x+ arctan

(

tanh v

cγ

)

,

where u, v, γ are still given by (2.4).

The fermionic fluctuations are two Majorana-Weyl fields ΘI , with action given by

Metsaev and Tseytlin [62]7

S = 2

√
λ

4π

∫

dtdx LF where LF = i(ηabδIJ + ǫabηIJ ) Θ
I
ρaDbθ

J .

The covariant derivative is defined as

DaΘ
I =

(

∂a +
1

4
ωAB

a ΓAB

)

δIJΘJ − i

2
Γ⋆ρaǫ

IJΘJ

7Note that we use ǫ and η with different kinds of indices: ǫab=01 = 1 = ǫAB=12, and ηab=00 = −1 =

ηIJ=11. Our gamma-matrices are in the all imaginary basis: ΓA6=0 are Hermitian and Γ0 is anti-Hermitian.

ΓAB = Γ[AΓB], thus Γφθ = ΓφΓθ.
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where Γ⋆ = iΓ01234 = iΓ[0Γ1Γ2Γ3Γ4] (these are the AdS directions) has Γ2
⋆ = 1. This action

leads to the following equations of motion:

(ρ0 − ρ1) (D0 +D1) Θ1 = 0 ,

(ρ0 + ρ1) (D0 −D1) Θ2 = 0 .

The projections of the gamma matrices ρa = ΓAE
A
µ ∂aX

µ and the spin connection ωAB
a =

ωAB
µ ∂aX

µ are:8

ρ0 = Γ0 + cγ2 cos2 θ

sin θ
Γφ + γ2 cos θ

sin θ

√

sin2 θ − c2Γθ = Γ0 + r(θ)Γφ + s(θ)Γθ ,

ρ1 = γ2 sin2 θ − c2

sin θ
Γφ − cγ2 cos θ

sin θ

√

sin2 θ − c2Γθ = p(θ)Γφ + q(θ)Γθ ,

ω0 = −ωφθ
0 = −cγ2 cos3 θ

sin2 θ
,

ω1 = −ωφθ
1 = −γ2 cos θ

sin2 θ
(sin2 θ − c2) .

The first step is to replace ∂0 = ∂t and ∂1 = ∂x with the boosted derivatives ∂u =

γ(∂1 + c∂0) and ∂v = γ(∂0 + c∂1), thus

∂0 ± ∂1 = (1 ∓ c)γ {∂u ± ∂v} .

Following this pattern, define G and G̃ as follows:

ωφθ
0 + ωφθ

1 = (1 − c)γ
1

2
G, where G = γ

cos θ

sin2 θ
(c+ sin2 θ),

ωφθ
0 − ωφθ

1 = (1 + c)γ
1

2
G̃, G̃ = γ

cos θ

sin2 θ
(c− sin2 θ).

The equations of motion can then be written as

(ρ0 − ρ1)

[

(1 − c)γ

{

∂v + ∂u +
1

2
GΓφθ

}

Θ1 − i

2
Γ⋆(ρ0 + ρ1)Θ

2

]

= 0, (3.2)

(ρ0 + ρ1)

[

(1 + c)γ

{

∂v − ∂u +
1

2
G̃Γφθ

}

Θ2 +
i

2
Γ⋆(ρ0 − ρ1)Θ

1

]

= 0.

It is useful to define operators

Dv = ∂v +
1

2
GΓφθ , D̃v = ∂v +

1

2
G̃Γφθ ,

so that the curly brackets in the equations of motion (3.2) are these operators plus or minus

the time derivative ∂u.

8As functions of θ, these are simply related to their cousins in the giant magnon case: ρ0 = ρmagnon
1 +Γ0,

ρ1 = ρmagnon
0 − Γ0, ω0 = ωmagnon

1 and ω1 = ωmagnon
0 . We took our conventions for the spin connection

from [63]. Functions p, q, r, s are useful in what follows.
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We now want to write the equations of motion in terms of kappa-symmetry fixed

fields, [64, 57, 53] which we define as

Ψ1 = −i(ρ0 − ρ1)Θ
1 , (3.3)

Ψ2 = i(ρ0 + ρ1)Θ
2 .

Note that Γ11 anti-commutes with i(ρ0 ± ρ1), and that these operators are real. Thus ΘI

is Majorana-Weyl exactly when ΨI is, so we will impose the conditions on ΨI .

To write the equations of motion in terms of these symmetry-fixed fields, we will need

several identities, identical in form to those in the giant magnon case [57].9 The following

two operators are nilpotent:

(ρ0 ± ρ1)
2 = 0

(thus (ρ0 − ρ1)Ψ
1 = 0 and (ρ0 + ρ1)Ψ

2 = 0) and can be shown to commute with the curly

derivatives

[Dv, (ρ0 − ρ1)] = 0 ,
[

D̃v, (ρ0 + ρ1)
]

= 0 .

(They trivially commute with ∂u too.) Also important is the dagger of ρ0:

ρ0 ≡ Γ⋆ρ0Γ⋆ = −ρ†0 = Γ0 − rΓφ − sΓθ,

which allows us to write two more nilpotent operators

(ρ0 ± ρ1)
2 = 0

as well as a non-singular operator (ρ0 − ρ0) = −2rΓφ − 2sΓθ, whose square is proportional

to the unit matrix:

(ρ0 − ρ0)
2 = 4γ2 cos2 θ.

Returning to the equations of motion (3.2), we can now pull the operators (ρ0 ± ρ1)

to the right, using the identities above, until they act on the ΘI to give ΨI . We obtain:

(1 − c)γ {Dv + ∂u}Ψ1 +
i

2
Γ⋆(ρ0 + ρ0)Ψ

2 = 0 , (3.4)

(1 + c)γ
{

D̃v − ∂u

}

Ψ2 − i

2
Γ⋆(ρ0 − ρ0)Ψ

1 = 0 .

3.2 Non-zero modes

Begin by solving the first of equations (3.4) for Ψ2 :

Ψ2 =
(ρ0 − ρ0)

4γ2 cos2 θ
Γ⋆

2

i
(1 − c)γ {Dv + ∂u}Ψ1. (3.5)

9To derive these identities, write relations such as (ρ0 ± ρ1)
2 = −1+ (r± p)2 +(s± q)2 and (ρ0 ± ρ1)

2 =

−1 + (−r ± p)2 + (−s ± q)2.
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We can then eliminate Ψ2 from the other equation to obtain a second-order equation for

Ψ1 alone:
{

D̃v − ∂u

} (ρ0 − ρ0)

γ2 cos2 θ
{Dv + ∂u}Ψ1 + (ρ0 − ρ0)Ψ

1 = 0.

Using the identity
{

D̃v − ∂u

} (ρ0 − ρ0)

cos θ
=

(ρ0 − ρ0)

cos θ
{Dv − ∂u}

and pulling the (ρ0 − ρ1) from Ψ1’s definition through, this becomes

(ρ0 − ρ1)

(

1

γ cos θ
{Dv − ∂u}

1

γ cos θ
{Dv + ∂u} + 1

)

Θ1 = 0 , (3.6)

analogous to equation (3.7) of [53]. We can solve this equation by a similar method to the

one used there: we temporarily drop the kappa-symmetry projection (ρ0 − ρ1), and solve

the remainder of the equation for Θ1. At the end we will apply the projection to recover

Ψ1, and from that will find Ψ2 using (3.5).

To find Θ1, we split this second-order equation (3.6) into two first-order equations,

defining some intermediate field Θ̃:

[

Dv + ∂u −i sech v
−i sech v Dv − ∂u

](

Θ1

Θ̃

)

= 0 .

We expand the spinor in a Fourier series for u:

(

Θ1 (u, v)

Θ̃ (u, v)

)

= e−iωu~Θ(v, ω) , (3.7)

and also into a sum of eigenspinors of Γφθ: ~Θ = ~Θ+ + ~Θ− with

(12×2 ⊗ Γφθ) ~Θ± = ±i ~Θ±.

Then the coupled linear equations can be written as

(∂v − V±) ~Θ± = 0, with V± =

[

i
(

ω ∓ G
2

)

i sech v

i sech v −i
(

ω ± G
2

)

]

.

We now proceed to diagonalize the system of equations, by a change of basis.

Diagonalisation. Define ~Θ′
± = S~Θ±, which obeys

∂v
~Θ′
± = (∂vS + SV±)S−1~Θ′

± = H±~Θ
′
± (3.8)

(defining H±). We want to choose S to make H± diagonal. If we write

S =

[

a(v) b(v)

c(v) d(v)

]

,
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then setting the off-diagonal elements of H± to zero reads

0 = i(a2 − b2) sech v − 2iωab− ba′ + ab′,

0 = i(d2 − c2) sech v + 2iωcd− cd′ + dc′.

One obtains the same equations for both H+ and H−, which means S diagonalizes both

simultaneously. Because we have only two equations and four parameters, we choose two

additional relations among these four entries10

a′ = −ib sech(v) , (3.9)

c′ = −id sech(v) ,

leading to a second-order equation for a (and c obeying the same equation):

−a′′ − tanh v a′ + 2iωa′ − sech2 v a = 0. (3.10)

It also leads to this simple form for H±:

H± = i

(

ω ∓ G

2

)

[

1 0

0 1

]

. (3.11)

The two solutions to (3.10) are

a1 (v) =
2iω

1 + 4ω2
+

tanh v

1 + 4ω2
,

a2 (v) = e2iωv sech v ,

and a(v) and c(v) are (different) linear combinations of these. The other functions b(v)

and d(v) are then fixed by (3.9). We can write the general solution for S as

S = S0

[

a1(v) b1(v)

a2(v) b2(v)

]

where S0 is a non-singular constant matrix, and

b1 (v) = i
sech v

1 + 4ω2
,

b2 (v) = i (2iω − tanh v) e2iωv .

The determinant of this change of basis is detS = −ie2iωv detS0, different from zero,

as expected.

10These extra relations can be imposed by multiplying S by a non-singular diagonal matrix, which is

always allowed as it does not change the equations of motion (3.8).
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Solving. We can now solve the diagonalized system (3.8), using H± from (3.11). The

equations become simply
(

∂v − i

(

ω ∓ G

2

))

f(v) = 0 .

A very similar equation occurs in the magnon case [57] (and also for the zero modes in

appendix A). It has solution f(v) = e±iχeiωv, where

eiχ =

(

sinh v + ic

sinh v − ic

)1/4 √
tanh v + i sech v.

Thus ~Θ′
± will be given by this phase times a spinor:

~Θ′
± = e±iχeiωv ~U± ,

where ~U± is any eigenspinor of (1 ⊗ Γφθ) with eigenvalues ±i. It remains to rotate back to

unprimed ~Θ±, which is
~Θ± = S−1~Θ± = e±iχeiωvS−1 ~U±.

We can now absorb the constant matrix S−1
0 into the arbitrary spinor ~U±, which we do by

writing

S−1
0
~U± =

1√
1 − c

(

U±
Ũ±

)

,

introducing U± and Ũ±, and slipping in the
√

1 − c for later convenience.

Recall from (3.7) that our original spinor Θ1 is the first component of

e−iωu
(

~Θ+ + ~Θ−
)

. We can now read it off, obtaining11

Θ1 (u, v) =
1√

1 − c
e−iωu

∑

±

eiωv±iχ

−ie2iωv

[

b2 (v)U± − b1 (v) Ũ±
]

=
−1√
1 − c

e−iωu
∑

±
e±iχ

[

e−iωv sech v

1 + 4ω2
U± + (tanh v − 2iω) eiωvŨ±

]

.

To get the symmetry-fixed field Ψ1 = −i(ρ0 − ρ1)Θ
1 it is useful to use the identity e±2iχ =

(p − r) ∓ i(q − s). We find the following positive-frequency solution:

Ψ1
p =

i e−iωu

√
1 − c

∑

±

(

e±iχΓ0 − e∓iχΓφ

)

[

e−iωv sech v

1 + 4ω2
U± + (tanh v − 2iω) eiωvŨ±

]

=
i√

1 − c

∑

±

(

e±iχΓ0 − e∓iχΓφ

)

[

eiα
sech v

1 + 4ω2
U± +

√

tanh2 v + 4ω2eiβŨ±

]

(3.12)

where the phases α and β are defined by

eiα = e−iω(u+v),

eiβ = e−iω(u−v)e−i arctan(2ω coth v).

11The second entry will be given by

Θ̃ (u, v) = −ie−iωue±iχ

»

eiωv sech v U± − (tanh v + 2iω)

1 + 4ω2
e−iωvŨ±

–

.

This is useful for finding Ψ2 later.
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Majorana condition. It remains to impose the Majorana condition on the spinors, that

is, ΨI should be real ΨI∗ = ΨI . To do so, we have to consider a superposition of positive

and negative frequencies ω. We thus write

Ψ1 = 2Re Ψ1
p = Ψ1

p + Ψ1∗
p

=
i√

1 − c

∑

±

(

e±iχΓ0 − e∓iχΓφ

)

[

sech v

1 + 4ω2

(

eiαU± + e−iαU∗
∓
)

+
√

tanh2 v + 4ω2
(

eiβŨ± + e−iβŨ∗
∓
)

]

.

Note that U∗
∓ is an eigenspinor of Γφθ of eigenvalue ±i. (The Γ matrices are imaginary,

thus Γφθ is real.)

Combine the four ± eigenspinors into two spinors U = U+ + U− and Ũ = Ũ+ + Ũ−.

(We can reverse this with projection operators U± =
i±Γφθ

2i U , and similarly for the others.).

Then we can write

Ψ1 =
i√

1 − c
[Γ0 (cosχ+ Γφθ sinχ) − Γφ (cosχ− Γφθ sinχ)]

×
{

sech v

1 + 4ω2
Re(eiαU) +

√

tanh2 v + 4ω2 Re(eiβŨ)

}

=
i√

1 − c
[Γ0 (cosχ+ Γφθ sinχ) − Γφ (cosχ− Γφθ sinχ)]

×
{ sech v

1 + 4ω2
(cosαU0 + sinαΓφθU1)

+
√

tanh2 v + 4ω2
(

cos β Ũ0 + sin β ΓφθŨ1

)}

, (3.13)

where the new spinors are

U0 = 2Re (U+ + U−) , Ũ0 = 2Re
(

Ũ+ + Ũ−
)

, (3.14)

U1 = 2Re (U+ − U−) , Ũ1 = 2Re
(

Ũ+ − Ũ−
)

,

thus U0 = 2ReU , but U1 = 2Γφθ ImU (and similarly with tildes).

We can now find Ψ2 from Ψ1 using (3.5). The final, Majorana, field is

Ψ2 =
1√

1 + c
Γ∗Γθ [Γ0 (cos χ̃+ Γφθ sin χ̃) − Γφ (cos χ̃− Γφθ sin χ̃)]

×
{

sech v
(

cos α̃ Ũ0 + sin α̃ΓφθŨ1

)

−
√

tanh2 v + 4ω2

1 + 4ω2

(

cos β̃ U0 + sin β̃ ΓφθU1

)}

, (3.15)

where the new phases are

eiχ̃ =

√

sinh v − ic

sinh v + ic
eiχ =

(

sinh v − ic

sinh v + ic

)1/4 √
tanh v + i sech v,

eiα̃ = e−iω(u−v),

eiβ̃ = e−iω(u+v)ei arctan(2ω coth v).
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3.3 Mass and counting

The phases appearing in Ψ1, far from the spike (|v| ≫ 1), are iα = −iωu − iωv and

iβ = −iωu + iωv. This means that the fermionic modes are massless, ω2 = k2. But the

bosonic modes we found in section 2 are not massless, so there can be no supersymmetry.

How many fermionic modes are there? There are four spinors U± and Ũ±, which are Γφθ

eigenspinors, so have 16 complex components each. They must also be Γ11 eigenspinors,

for Ψ to be Weyl, cutting the number by half. And then we found in (3.14) that the

Majorana spinor depends only on the real part of each, cutting it in half again. This leaves

16 complex degrees of freedom, which is twice the number for the giant magnon. [53]

The bosonic modes were obtained simply by switching x ↔ t in the magnon expres-

sions. So their number is unchanged from the magnon case: there are 8 non-zero modes (4

on the sphere and 4 in AdS). The fact that there are two fermionic modes for each bosonic

modes is a second piece of evidence against supersymmetry.

There are also twice as many fermionic zero modes (8 complex) as bosonic zero modes

(4, as for the magnon). Because the non-zero modes are massless, ω = 0 is part of the

continuum, and expressions for the zero modes can be found by simply setting ω = 0

in (3.13) and (3.15) above (which sets α = β = 0). But the counting is more delicate,

the zero modes appear to have the same dependence on ReU± and Re Ũ± as the non-zero

modes, suggesting that there are also 16 of them. However, the same argument as used for

the magnon case [57] kills half of these, leaving 8. We perform the exact analogue of [57]’s

calculation of the magnon zero modes in appendix A.

4. Quantum corrections

4.1 Corrections to what?

Having found the modes, it would be natural to use them to compute a first quantum

correction, i.e. to perform ‘semi-classical quantisation’. For the giant magnon, this means

finding quantum corrections to ∆ − J . The origin of this is as follows:

Frolov and Tseytlin [39] consider the ‘vacuum’ of the large-J sector, the point particle

orbiting the sphere, which has ∆ = J . They add small perturbations to this, and show

that ∆−J is (at leading order in 1/
√
λ) the Hamiltonian of a 1+1-dimensional theory. The

perpendicular fluctuations in both the sphere and AdS are non-interacting massive fields

of this theory. So far this is classical. The semi-classical correction is to treat each mode

of these fields as a harmonic oscillator, and their zero-point energies ‘12~ω’ are corrections

to ∆− J . The magnon is interpreted as a ‘giant perturbation’ of this vacuum, tall enough

to see the curvature of spacetime. (And, it turns out, of high enough momentum to see

that the 1+1-dimensional theory is a spin chain, with periodic dispersion relation.)

Here we repeat their calculation, for the ‘vacuum of the large-winding sector’: the

infinitely wound hoop. We find as Hamiltonian ∆−Φ, with the winding charge Φ replacing

the angular momentum J . The single spike is similarly a ‘giant perturbation’ of this

vacuum.
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Recall from section 2.1 that the flat-space versions of these two classes of spiky strings

are related by T-duality, which famously exchanges winding and momentum around a

compact direction. Clearly this change in the Hamiltonian is somehow a consequence of

this duality. But notice that the compact direction here is part of a sphere, and that the

radius of this sphere is unchanged.

Finding the hamiltonian. Write the metric in the form12

ds2AdS = −
(

1 + η2/4

1 − η2/4

)2

dτ2 +
1

(1 − η2/4)2
dηkdηk k = 1, 2, 3, 4

ds2S = dθ2
1 + cos2 θ1

(

dθ2
2 + cos2 θ2

(

dθ2
2 + cos2 θ2

(

dθ2
3 + cos2 θ3

(

dθ2
4 + cos2 θ4dφ

2
))))

.

The action (in conformal gauge) is

S = −
√
λ

2π

∫

dxdt LB , LB =
1

2
∂aXµ∂aX

νGµν . (4.1)

We write the perturbed the solution as Xµ = Xµ
hoop + X̃µ/λ1/4:

τ = t+
1

λ1/4
τ̃ φ = x+

1

λ1/4
φ̃ (4.2)

ηk =
1

λ1/4
η̃k θs =

1

λ1/4
θ̃s, s = 1, 2, 3, 4.

Expanding at large λ, the Lagrangian becomes

LB = 1 +
1

λ1/4

(

∂0τ̃ + ∂1φ̃
)

+
1

2
√
λ

(

−∂aτ̃ ∂aτ̃ + ∂aη̃k∂aη̃k + ∂aφ̃∂aφ̃+ ∂aθ̃s∂aθ̃s + η̃kη̃k − θ̃sθ̃s

)

+
1

λ3/4

(

(∂0τ̃)η̃kη̃k − (∂1φ̃)θ̃sθ̃s

)

+ O
(

1

λ

)

. (4.3)

In the quadratic piece, η̃k appears massive and θ̃s tachyonic, matching what we found for

the single spike’s modes.

The Virasoro constraints are first γ00 + γ11 = 2T00 = 0:

0 =
1

λ1/4

(

−∂0τ̃ + ∂1φ̃
)

+
1

2
√
λ

(

−∂aτ̃ ∂aτ̃ + ∂aη̃k∂aη̃k + ∂aφ̃∂aφ̃+ ∂aθ̃s∂aθ̃s − η̃kη̃k − θ̃sθ̃s

)

+ O
(

1

λ3/4

)

, (4.4)

12The azimuthal angle φ here is the same as used before, in (3.1), but θ4 = π/2 − θ is the elevation

above the equator. The expansions of the metric components which we need are Gττ = −1− η2 + · · · and

Gθθ = 1 − θ2 + · · · .
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(writing ∂a∂a = ∂0∂0 + ∂1∂1 in a temporary abuse of notation) and second γ01 = T01 = 0:

0=
1

λ1/4

(

−∂1τ̃ + ∂0φ̃
)

+
1

2
√
λ

(

−∂0τ̃ ∂1τ̃ + ∂0φ̃∂1φ̃+ ∂0η̃k∂1η̃k + ∂0θ̃s∂1θ̃s

)

+ O
(

1

λ3/4

)

.

Now we expand the spacetime charges: the energy is the integral of the momentum

density Π0
τ :

∆ =
1

2π

∫

dx
∂LB

∂ ∂0τ

=
1

2π

∫

dx

(√
λ+ λ1/4∂0τ̃ + η̃kη̃k + O

(

1

λ1/4

))

,

and the winding charge defined in (2.6) is

Φ =

√
λ

2π

∫

dx ∂1φ

=
1

2π

∫

dx
(√

λ+ λ1/4∂1φ̃
)

.

Subtracting these two charges, the two
√
λ terms will cancel, leaving a finite result. The

linear terms can then be replaced with quadratic terms using the first Virasoro con-

straint (4.4). To leading order in 1/λ, we obtain:

∆ − Φ =
1

4π

∫

dx

[

− (∂0τ̃ ∂0τ̃ + ∂1τ̃ ∂1τ̃) +
(

∂0φ̃∂0φ̃+ ∂1φ̃∂1φ̃
)

+ (∂0η̃k∂0η̃k + ∂1η̃k∂1η̃k) +
(

∂0θ̃s∂0θ̃s + ∂1θ̃s∂1θ̃s

)

+ η̃kη̃k − θ̃sθ̃s

]

. (4.5)

This is the analogue of the result in [39]. The fields τ̃ and φ̃ correspond to transformations

that are pure gauge, so we drop them. We can write ∆ − Φ in terms of the Hamiltonian

one would obtain from only the quadratic part of the Lagrangian LB (see appendix B.1),

which contains the transverse (physical) modes η̃k and θ̃s and their conjugate momenta

Π̃η̃k
, Π̃θ̃s

:

∆ − Φ =

∫

dx

2π
H2d

(

τ̃ , φ̃, η̃k, θ̃s

)

=
√
λ

∫

dx

4π

[

Π̃2
η̃k

+ Π̃2
θ̃s

+ ∂1η̃k∂1η̃k + ∂1θ̃s∂1θ̃s + η̃kη̃k − θ̃sθ̃s

]

.

We are left with four massive fields from vibrations in the AdS directions and four

tachyonic fields from the sphere directions. Then ∆ − Φ is the expected quadratic Hamil-

tonian for these 8 fields. One could perform a similar construction for the fermionic modes

obtaining 16 massless fermionic fields. [65, 66, 39]

4.2 First quantum correction

For each of the eight bosonic modes η̃k and θ̃s, we have a quadratic Hamiltonian of the

kind

H2 =

∫

dx

[

1

2
Π̂2 + φ̂

(

−∂2
x + V

)

φ̂

]

.
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Note that V = ±1 in our case, depending on whether the mode is massive or tachyonic. We

can expand both Π̂ and φ̂ eigenfunctions ψn of the differential operator
(

−∂2
x + V

)

ψn =

ω2
nψn, which we write φ̂ =

∑

φ̂nψn and Π̂ =
∑

Π̂nψn. The Hamiltonian becomes a sum of

decoupled harmonic oscillators

H2 =
∑ 1

2

(

Π̂2
n + ω2

nφ̂
2
n

)

.

By introducing creation and annihilation operators in the usual way, for each oscillator,

we find that each of these contributes 1
2

∑

~ωn, with13 ωn =
√

k2
n +m2, for some mass m2

and allowed momenta kn.

For our solution the bosonic modes of section 2 have W (K) =
√
K2 ± 1. Each of

the fermionic modes will contribute −1
2

∑

~Wfermi, where the fermionic modes found in

section 3 have W (K) = K.

There are two important issues here:

• First, to obtain a finite first quantum correction for any solution, one must always

subtract the quantum correction for the corresponding vacuum solution. Both of

these are normally UV divergent (and this subtraction is not the only renormalization

usually needed). For the single spike, the relevant vacuum is the hoop solution. Note

that the hoop has ∆ − Φ = 0 classically, so this subtraction is only needed for the

quantum corrections.

• Second, we are interested in studying those modes of the spike which result in its

instability. To determine the decay time of this unstable solution, we are only inter-

ested in the imaginary part of the energy correction. None of the fermionic modes

will contribute to this, as they are massless, nor will the 4 bosonic modes in AdS5, as

they are massive. The only contribution is from the 4 tachyonic modes on the sphere,

which have W (K) = ±
√
K2 − 1, and here only from those modes with |K| < 1. This

excludes the UV modes, and in fact no other renormalization will be needed.

Vacuum. The bosonic and fermionic modes for the hoop can be found in appendix B.2.

They have the same masses as their counterparts for the single spike, in particular the

sphere modes have W (K) = ±
√
K2 − 1. To discretise the momentum K, we put the

solution in a box −L
2 < x < L

2 and impose periodic boundary conditions δX
(

−L
2

)

=

δX
(

L
2

)

. Then Kn = 2πn
L , with n ∈ Z, and the contribution of these modes to the vacuum

energy is given by

∆Ehoop = 4
1

2

∑

n

√

K2
n − 1

≈ 2
L

2π

∫ 1

−1
dK

√

K2 − 1 as L→ ∞

=
i

2
L . (4.6)

The integration is over |K| < 1 because we are looking for just the imaginary part. We do

not encounter a UV divergence here.

13In the literature, νn = Tωn (where T is some large time) is called a stability angle.
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Spike solution. Again we study only the bosonic modes on the sphere with |K| < 1.

But the discrete momenta K allowed for the spike are not the same as those for the hoop

Kn, as the modes have a phase shift at large x compared to the hoop. Looking at the

bosonic sphere modes given in (2.12) and (2.13), far away from the spike (|v| ≫ 1) we have

δ⊥ ~X (x) = eiKx−i
√

K2−1t ~m [γ (cK −W ) + i tanh (γ (t− cx))] , (4.7)

δ|| ~X (x) = eiKx−i
√

K2−1t ~n [γ (cK −W ) + i tanh (γ (t− cx))] ,

and δX1 = δX2 = 0 for both.14 Fixing t = 0 and evaluating at large distance x = ±L
2 ,

they both become

δ ~X

(

±L
2

)

= e±iK L
2
±iδ±A±,

where the phase shifts and amplitudes at the two ends are given by

tan (δ±) =
−1 ∓ γ

√
1 −K2

γcK
, (4.8)

A± =

√

(γcK)2 +
(

γ
√

1 −K2 ± 1
)2
.

The next step would be to impose periodic boundary conditions on δX at x = ±L
2 .

But here we encounter a problem, as the modes have different amplitudes at the two ends.15

Instead we will demand only that the phases match at x = ±L
2 , and allow the amplitudes

to be different. (We will discuss this further in the next section.) Then K has to obey

KL+ δ+ (K) + δ− (K) = KnL,

where Kn = 2πn
L is still the discretised momentum of the vacuum solution. Taking L very

large we can approximate K by

K = Kn − 1

L
δ (Kn) + O

(

1

L2

)

14To obtain this, note that K, W and k, ω are related by K = −γ
`

ck +
√

k2 − 1
´

and W =

−γ
`

k + c
√

k2 − 1
´

, from (2.14) and (2.4).
15Recall that the worldsheet velocity of the single spike is 1/c > 1. Thus (x, t) = (±L/2 , 0) might be

better thought of as points before and after the spike, rather than left and right of it. Consider instead

points (x, t) with large |t|, for which both of the modes δ⊥ and δ|| in (4.7) become

δX = eiKx−iWt ( γ (cK − W ) + i sign(t) )

= eiKx+
√

1−K2t
“

γcK − iγ
p

1 − K2 + i sign(t)
”

.

In the second line we’ve chosen to focus on the growing mode W = +i
√

1 − K2. Averaging over x by taking

the modulus, we get

|δX| = e
√

1−K2t

r

(γcK)2 +
“

sign(t) − γ
p

1 − K2
”2

.

This is an exponentially growing mode, with a step in it where the spike happens.
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where δ(K) ≡ δ+(K) + δ−(K). Finally we can determine the imaginary correction to the

energy of the spike from the four tachyonic modes, by putting L→ ∞:

∆Espike = 4
∑

K

1

2
W (K)

≈ 4
L

2π

∫ 1

−1
dK

1

2
W

(

K − 1

L
δ(K)

)

as L→ ∞

= ∆Ehoop − i2

√

1 − c

1 + c
. (4.9)

In the expression above, ∆Ehoop = iL/2 is the correction (4.6) to the vacuum solution.

Thus in the difference ∆Espike − ∆Ehoop the IR divergence from L→ ∞ is cancelled.

4.3 About these boundary conditions

We found that when |K| < 1 the amplitude of the mode (4.7) is different at large positive

and negative x. This is the obstruction to imposing periodic boundary conditions, which

we avoided by matching only the phases. One should not be surprised that we cannot

impose periodic boundary conditions: they amount to gluing the string to itself after some

large number of windings, or rather, gluing the vibrations on it to themselves, and this

might not be allowed.

For the giant magnon, one has to glue a series of magnons together with
∑

i pi = 0 to

obtain a valid closed string solution. But is not clear that this is a condition on the allowed

series of single spikes. It would tell you about periodicity of the spatial Xi(x, t) under t,

but say nothing about their behaviour at large |x|.
Here we consider a solution of two widely separated spikes with opposite velocities 1

c

and −1
c , because for this choice we can impose honest boundary conditions. In this case

we recover the twice the energy correction (4.9) obtained above, one for each spike. This

justifies our use of these unusual boundary conditions.

Two spikes. As x → ±L
2 , the amplitude of the mode (4.7) becomes A±, given in (4.8).

This formula is valid for c > 0; for c < 0 the sign ± is reversed, and we have instead
∣

∣δXc<0(±L
2 , 0)

∣

∣ = A∓.

This immediately suggests the following way to impose consistent boundary conditions:

take two spikes, far apart, with parameters c and −c. Each is in a box of length L, and we

connect these together. That is, consider

Xµ(x, t) =

{

Xspike(c)

(

x− L
2 , t
)

for 0 < x < L ,

Xspike(−c)

(

x− 3L
2 , t

)

L < x < 2L

which is an approximate solution near t = 0. In fact it is a part of a scattering solution,

since the two spikes have velocities 1/c and −1/c. It can be viewed as an excitation above

a hoop of length 2L.

Vibrations of this solution will be described by the same modes we have been using, and

we again focus on the |K| < 1 sphere modes, which give the imaginary energy correction.

– 23 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
8

For the boundary condition at x = L , both modes δX have amplitude A+, so matching

them sets their phases equal there. And at x = 0, 2L we can impose periodic boundary

conditions, since both modes have amplitude A− there. The resulting condition on the

allowed K is simply

K = Kn − 1

2L
δ(c) (Kn) − 1

2L
δ(−c) (Kn) + O

(

1

L2

)

,

where Kn = 2πn
2L are now the allowed wave numbers for the vacuum in length 2L. This

leads to energy correction

∆E = ∆Espike(c) + ∆Espike(−c) ,

i.e. we obtain the sum of the corrections we calculated in (4.9) by imposing our phase-only

boundary condition at x = ±L
2 . The finite piece (after subtracting the vacuum’s ∆Ehoop)

is twice the finite piece for one spike.

5. Conclusion

In this paper we determined the bosonic and fermionic modes of the single spike solution.

Because there is a mismatch between the modes in these two sectors, both in number

and in their masses, the spike cannot be supersymmetric. Some of the bosonic modes are

tachyonic, showing that the single spike is unstable, like the relevant ‘vacuum’ solution

which we referred to as the hoop.

We found that the Hamiltonian for small fluctuations of this vacuum is ∆ − Φ. The

winding Φ has replaced the angular momentum J found in the Hamiltonian for the magnon

case, which is not surprising given that T-duality relates similar solutions in flat space.

Using this result we performed a semi-classical calculation of the lifetime of the solution.

The dispersion relation for giant magnons (2.7) is periodic in p, which is the signature

of discrete space. This is understood to be the position along a spin chain. One should

not read the apparent lack of such periodicity in the single spike’s case (2.8) as evidence

against such discreteness. The recent paper [31] allows p outside our range 0 < p < π, and

finds that ∆ − Φ becomes periodic (their figure 1). However it is not clear that for the

single spike this parameter p can still be interpreted as a spin-chain momentum.

It had been conjectured that the single spike is dual to an excitation of an anti-

ferromagnetic spin chain. [28, 42] These have been various attempts to find an N -body

description of the giant magnon, such as a Hubbard models, [67, 68] as was done for sine-

gordon kinks. [69, 70] It is possible that this solution will be another test case for such a

description.

The single spike is an excitation of an unstable vacuum state, the string wrapped

around an equator of S5. One can stabilise such loops of string by making them rotate

in other planes. [71, 72] These can carry large angular momentum by being wound many

times. It is possible that adding these extra angular momenta may stabilize the spike

solution too, and it may be this object which has a more natural gauge theory dual.
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A. Fermionic zero modes

This appendix contains the exact analogue of the calculation done for the magnon in [57].

It has the virtue that it is easy to see why the single spike has twice as many modes as the

magnon does; this was somewhat obscure in the non-zero mode calculations of section 3.2.

But the result is identical to simply setting ω = 0 there.

The zero modes are those with ∂uΨI = 0. Then the second-order equation (3.6)

becomes
(

1

γ cos θ
Dv

1

γ cos θ
Dv + 1

)

Ψ1 = 0,

which factorises, and that is why the calculations are much easier than the non-zero modes.

This equation implies that (Dv − η iγ cos θ)Ψ1 = 0 with one of η = ±1, or pulling

(ρ0 − ρ1) out:

(ρ0 − ρ1)

{

∂v +
1

2
GΓφθ + η iγ cos θ

}

Θ1 = 0.

As for the non-zero modes, we first ignore the κ-symmetry projection and solve for Θ1 alone.

The matrix part of this equation involves only 1 and Γφθ, which can be simultaneously

diagonalised. Write the solution as

Θ1 = Θ+ + Θ− = f+(v)U+ + f−(v)U− ,

where the spinors U± (and so Θ±) are Γφθ eigenvectors, with eigenvalues ±i respectively.

All that is left to solve is
{

∂v ±
i

2
G+ η iγ cos θ

}

f±(v) = 0.

The solutions are pure phase,

f±(v) = e±iχeiηχ2 where eiχ =

(

sinh v + ic

sinh v − ic

)1/4 √
tanh v + i sech v,

e±iχ2 = sech v ± i tanh v.

The difference between these solutions and the giant magnon’s ones [57] is that instead

of a modulating factor sech u, we get an extra phase eiηχ2 . It is this modulating factor
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which makes one solution normalisable, and allows Minahan to reject the other sign of

η for producing a solution which diverges at large u. But in our case both signs lead to

non-normalisable solutions. The general solution is a linear combination of the η = +1 and

η = −1 cases:

Ψ1 = −i(ρ0 − ρ1)
1√

1 − c

∑

±
e±iχ

∑

η

eiηχ2Uη
± .

(We’ve smuggled in a factor of
√

1 − c for reasons of aesthetic balance between between Ψ1

and Ψ2.) Writing out (ρ0 − ρ1) and using the identity e±2iχ = (p− r)∓ i(q− s), we obtain:

Ψ1 =
i√

1 − c
[Γ0 (cosχ+ Γφθ sinχ) − Γφ (cosχ− Γφθ sinχ)]

(

sech v U0 + tanh v Ũ0

)

where we’ve combined the arbitrary spinors Uη
± into

U0 = −
(

Uη=1
+ + Uη=1

−
)

−
(

Uη=−1
+ + Uη=−1

−
)

,

Ũ0 = −i
(

Uη=1
+ + Uη=1

−
)

+ i
(

Uη=−1
+ + Uη=−1

−
)

.

The reason for this choice is that the Majorana condition Ψ∗ = Ψ now simply requires that

U0 and Ũ0 be themselves Majorana spinors. (The Γ-matrices are all imaginary, thus Γφθ is

real.)

Having found Ψ1, we immediately have Ψ2 as an operator acting on it, from (3.5),

with no further choices to make. We can write:

Ψ2 =
Γ⋆Γθ√
1 + c

[Γ0 (cos χ̃+ Γφθ sin χ̃) − Γφ (cos χ̃− Γφθ sin χ̃)]
(

sech v Ũ0 − tanh v U0

)

where as before eiχ̃ = e−iχ+iχ2 , and (r ± i s) = ±iγ cos θe±i(χ̃−χ) was used.

Comparing these zero modes with the non-zero modes (3.13) and (3.15), it is clear

that they are simply the ω = 0 case of the latter (i.e. α = β = 0). This is different from

the supersymmetric giant magnon case, where the massive non-zero modes of [53] do not

connect to the zero modes of [57].

Let us pause to count these modes: the four spinors Uη
± are Γφθ-eigenspinors, thus

have 16 complex components each. They must be Weyl spinors, i.e. Γ11-eigenspinors,

which cuts the number in half. Requiring U0 and Ũ0 to be Majorana cuts it in half again,

to 16 components in total. This is the same number we would count by setting ω = 0 in

the non-zero modes above, as must be the case: U0 is the same spinor. At this stage [57]

had 8 complex components. The argument below cuts it by another factor of 2 in both

cases.

Slow-motion. In [57], Minahan uses an argument which runs as follows: regard the

spinors U0 and Ũ0 as a moduli of the solution, and allow them to become time-dependent,

∂uU 6= 0. Substituting a zero mode into the action will give zero, but this ‘slowly-moving’

mode needn’t do so. The zero modes whose slowly-moving cousins give a non-zero action

are ‘real’ zero modes, the others pure gauge. [73]
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When substituting the slowly-moving mode Θ =
∑

F (v)U(u) into the Lagrangian, the

equations of motion force everything except the ∂u terms to vanish, leaving

LF = −iγ(1 − c) Θ
1
(ρ0 − ρ1)∂uΘ1 + iγ(1 + c) Θ

2
(ρ0 + ρ1)∂uΘ2.

(As usual Θ = Θ†Γ0.) Using the identities 2Γ0(ρ0±ρ1) = −(ρ0±ρ1)
†(ρ0±ρ1) this becomes

LF = iγ
1 − c

2
Ψ1†∂uΨ1 − iγ

1 + c

2
Ψ2†∂uΨ2.

Now plug in ΨI from above, to obtain

LF =
iγ

2

[

(Γ0 − Γφ)
(

sech v U0 + tanh v Ũ0

)]†
∂u

[

(Γ0 − Γφ)
(

sech v U0 + tanh v Ũ0

)]

− iγ

2

[

(Γ0 − Γφ)
(

sech v Ũ0 − tanh v U0

)]†
∂u

[

(Γ0 − Γφ)
(

sech v Ũ0 − tanh v U0

)]

.

Both U0 and Ũ0 always appear acted on by (Γ0 − Γφ). Thus only those modes satisfying

(Γ0 + Γφ)U0 = 0 and (Γ0 + Γφ)Ũ0 = 0 contribute. The situation is identical to the magnon

case in that only half of the modes appearing in ΨI contribute here (‘are real,’ meaning

true, zero modes). But since there are two constant Majorana-Weyl spinors U0 and Ũ0

here, instead of only one for the giant magnon, there are twice as many modes: 8 instead

of 4 complex degrees of freedom. Thus for both the non-zero modes and the zero modes,

in the fermionic sector, we find twice as many as in the giant magnon case.

B. Hamiltonian formulation and energy corrections

B.1 Quadratic 2-dimensional hamiltonian

Starting from the Lagrangian for the fluctuations (4.3), we find its quadratic part to be

(up to factors of λ):

L̃2 =
1

2

(

−∂aτ̃ ∂aτ̃ + ∂aη̃k∂aη̃k + ∂aφ̃∂aφ̃+ ∂aθ̃s∂aθ̃s + η̃kη̃k − θ̃sθ̃s

)

.

By determining the conjugate momenta for each of the fluctuation fields, Π̃µ = ∂L̃
∂(∂0X̃µ)

,

we find

Π̃τ̃ = ∂0τ̃

Π̃X̃µ = −∂0X̃
µ for X̃µ = η̃k, θ̃s, φ̃.

From these we can construct the corresponding Hamiltonian density in the usual way,

obtaining

H̃2 =
1

2

(

−Π̃2
τ̃ + Π̃2

φ̃
+ Π̃2

η̃k
+ Π̃2

θ̃s
+ η̃kη̃k − θ̃sθ̃s

)

.

We want to check that the quantity ∆−Φ is just this Hamiltonian. To do so we start by

determining the Hamiltonian corresponding to the original bosonic Lagrangian (4.1), and

expand it in fluctuations. The conjugate momenta for the fields are given by Πµ = ∂L
∂(∂0Xµ)
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where Xµ = τ, φ, ηk, θs. To find the Hamiltonian for the fluctuations, we expand the fields

as in (4.2), as well as the momenta:

Πµ = Πcl
µ + λ−

1
4 Π̃µ ; Xµ = Xµ

cl + λ−
1
4 X̃µ,

where the classical values of the fields are Πcl
τ = 1, Πcl

Xµ 6=τ = 0, τcl = t, φcl = x and all

other fields are zero. The expansion of the Hamiltonian then gives:

Hb =
1

2
√
λ

(

−Π̃2
τ̃ + Π̃2

φ̃
+ Π̃2

η̃k
+ Π̃2

θ̃s
− (∂1τ̃)

2 +
(

∂1φ̃
)2

+ (∂1η̃k)
2 +

(

∂1θ̃s

)2
)

+

+
1

2
√
λ

(

η̃kη̃k − θ̃sθ̃s

)

− 1

λ
1
4

(

Π̃τ̃ −
(

∂1φ̃
))

+ O
(

1

λ

)

.

The Virasoro constraint (4.4) is equivalent to setting Hb = 0.

It is easy to check that ∆ − Φ can be written in terms of the fields and conjugate

momenta as

∆ − Φ =

√
λ

2π

∫

dx

(

1

λ
1
4

(

Π̃τ̃ −
(

∂1φ̃
))

)

.

By using the Virasoro constraint in the form Hb = 0, we finally find

∆ − Φ =

∫

dx

2π

(

− Π̃2
τ̃ + Π̃2

φ̃
+ Π̃2

η̃k
+ Π̃2

θ̃s
− (∂1τ̃)

2 +
(

∂1φ̃
)2

+ (∂1η̃k)
2 +

(

∂1θ̃s

)2

+η̃kη̃k − θ̃sθ̃s

)

,

which returns the expected expression, when we drop the gauge fluctuations.

B.2 Modes for the hoop (vacuum) solution

It is simple to solve the equations of motion from the bosonic Lagrangian LB (4.3) in order

to determine the modes for the hoop solution. The transverse modes are

η̃k(x, t) = eiKx−iWtfk(K), W 2 = K2 + 1 ,

θ̃s(x, t) = eiKx−iWtgs(K), W 2 = K2 − 1 ,

i.e m2 = 1 in the AdS directions, and m2 = −1 on the sphere, the same masses as for the

single spike’s modes. The longitudinal modes are massless:

τ̃(x, t) = eiKx−i|K|tf(K),

φ̃(x, t) = eiKx−i|K|tg(K).

The same modes can also be obtained from those for the single spike, by going far

away from the spike itself. The sphere modes δ⊥ (2.12) and δ|| (2.13) of section 2.4 become

these simple ones θ̃s in the limit v → ∞, and the AdS modes are identical. The φ̃ mode is

the v → ∞ limit of δr (2.11), now more obviously pure gauge. We did not write down the

analogue of the τ̃ mode (among the spike’s non-zero modes) as we were focusing on the

spatial part, but this too is pure gauge.

– 28 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
8

Performing the same limit v → ∞ for the fermionic modes (3.13) and (3.15) leaves the

following modes for the hoop:

Ψ1 =
i√

1 − c
[Γ0 (cosχ+ Γφθ sinχ) − Γφ (cosχ− Γφθ sinχ)]

×
(

cos β Ũ0 + sinβ ΓφθŨ1

)

,

Ψ2 =
−1√
1 + c

Γ∗Γθ [Γ0 (cos χ̃+ Γφθ sin χ̃) − Γφ (cos χ̃− Γφθ sin χ̃)]

× 1

1 + 4ω2

(

cos β̃ U0 + sin β̃ ΓφθU1

)

.
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